

COMPSCI 389 Introduction to Machine Learning

Days: Tu/Th. Time: 2:30 – 3:45 Building: Morrill 2 Room: 222

Topic 5.0: Nearest Neighbor Variants Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Nearest Neighbor

- Find the point in the training data that is "closest" to the query.
- Return the corresponding label.
- If two points are equally close, select the label of any one point.
- Pros:
 - Simple
 - Sometimes all that you need!
- Cons:
 - Not always accurate, even with large amounts of data

```
import pandas as pd
from sklearn.neighbors import KDTree
from sklearn.base import BaseEstimator
import numpy as np
class NearestNeighbor(BaseEstimator):
    def fit(self, X, y):
        # Convert X and y to NumPy arrays if they are DataFrames.
       if isinstance(X, pd.DataFrame):
            X = X.values
       if isinstance(y, pd.Series):
           y = y.values
        # Store the training data and labels.
        self.X data = X
        self.y_data = y
        # Create a KDTree for efficient nearest neighbor search
        self.tree = KDTree(X)
        return self
    def predict(self, X):
        # Convert X to a NumPy array if it's a DataFrame
        if isinstance(X, pd.DataFrame):
            X = X.values
        # We will iteratively load predictions, so it starts empty
        predictions = []
        # Loop over rows in the query
        for x in X:
            # Query the tree for the nearest neighbor
            dist, ind = self.tree.query([x], k=1)
            nearest_label = self.y_data[ind[0][0]]
            predictions.append(nearest label)
        # Return the array of predictions we have created
        return np.array(predictions)
```

Nearest Neighbor Improvements

- Notions of "distance" that are customized to the data set.
- Better handling of the case where many points are equally "close" to the query:

- Query = 1.0 (horizontal axis)
- All points are zero distance from the query.
- Points have different labels (vertical axis).
- With infinite data, the basic NN algorithm will not make reasonable predictions.
- What should we do in this case?
 - Take the average of the labels (or median)

When is the median more appropriate?

Nearest Neighbor Improvements

• What if the points are not equally close, but many points are close?

- Only showing the closest points to the query.
 - Imagine many points for other input values (horizontal axis), which are not shown.
- Idea: Average the labels of the k nearest points
 - *k* is an integer hyperparameter.

Hyperparameter

- A **hyperparameter** of an ML algorithm is a variable, like k, that changes the behavior of the algorithm.
 - It is often set by the data scientist applying the algorithm.
 - It is not "learned" by the algorithm.

k-Nearest Neighbors (k-NN)

- Idea: Average the labels of the k nearest points
- Pseudocode:
 - Find the *k* nearest neighbors to the query point.
 - Called the "nearest neighbors"
 - If you will run many queries, consider using a data structure like a KD-Tree to find the nearest neighbors
 - Set the prediction to be the average label of these k nearest neighbors.
- Code:

class KNearestNeighbors(BaseEstimator):

Add a constructor that stores the value of k (a hyperparameter)
def __init__(self, k=3):
 self.k = k
Hyperparameter,
default value k = 3

Fit: Unchanged from NN

```
def fit(self, X, y):
   # Convert X and y to NumPy arrays if they are DataFrames
   if isinstance(X, pd.DataFrame):
       X = X.values
   if isinstance(y, pd.Series):
       y = y.values
   # Store the training data and labels
   self.X_data = X
   self.y data = y
```

```
# Create a KDTree for efficient nearest neighbor search
self.tree = KDTree(X)
```

return self

Here ind is:

- (m,k) NumPy array
 - *m*: Number of query points
 - *k*: The number of nearest neighbors
- ind[i,j]: The index of the jth nearest neighbor to the ith query point.

def predict(self, X):
 # Convert X to a NumPy array if it's a DataFrame

if isinstance(X, pd.DataFrame):

X = X.values

Query the tree for the k nearest neighbors for all points in X
dist, ind = self.tree.query(X, k=self.k)

Return the average label for the nearest neighbors of each query
return np.mean(self.y_data[ind], axis=1)

Here self.y_data[ind] is:

- (m,k) NumPy array
 - *m*: Number of query points
 - *k*: The number of nearest neighbors
 - [i, j]: The label for the j^{th} nearest neighbor to the i^{th} query point.

np.mean(self.y_data[ind], axis=1)

- Axis=1 specifies to take the mean for each *row*.
- Computes the average of the k labels for each query.
- Returns an array with one value per query (per row of self.y_data[ind])

array([[3.16667 , 3.2 , 3.73333],
 [3.55667 , 2.14333 , 1.33333],
 [3.23667 , 2.5 , 2.93333],
 ...,
 [0.973333, 2.60333 , 3.37667],
 [3.15 , 2.95 , 2.28],
 [3.42 , 3.31333 , 2.53667]])

NN vs k-NN (metrics)

```
def mean_squared_error(predictions, labels):
    return np.mean((predictions - labels) ** 2)
```

```
def root_mean_squared_error(predictions, labels):
    return np.sqrt(mean_squared_error(predictions, labels))
```

```
def mean_absolute_error(predictions, labels):
    return np.mean(np.abs(predictions - labels))
```

```
def r_squared(predictions, labels):
    ss_res = np.sum((labels - predictions) ** 2)
    ss_tot = np.sum((labels - np.mean(labels)) ** 2)
    return 1 - (ss_res / ss_tot)
```

```
	ext{MSE} = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2,
```

 $ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}.$

 $ext{MAE} = rac{1}{n}\sum_{i=1}^n \left|y_i - \hat{y}_i
ight|.$

```
R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2},
```

ss_res is the "Sum of Squares of Residuals"
ss_tot is the "Total Sum of Squares"

NN vs k-NN (data and train/test split)

from sklearn.model_selection import train_test_split

```
# Load the data set
df = pd.read_csv("data/GPA.csv", delimiter=',')
```

```
# We already loaded X and y, but do it again as a reminder
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
```

Split the data into training and testing sets (60% train, 40% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, shuffle=True)

NN vs k-NN

```
# List of values of k to test
k_values = [1, 2, 3, 5, 10, 100, 1000, 5000]
```

List to store the results. This will be a list of dictionaries
results_list = []

We will load results list with

- A list of dictionaries
- Each dictionary is a column name and a value
- Should look like this
- Can be converted to a DataFrame with:

```
# Create DataFrame from the list of results.
results = pd.DataFrame(results_list)
```

```
# Print the results
display(results)
```

[{'k': 1, 'MSE': 1.1520837122547205, 'RMSE': 1.073351625635663, 'MAE': 0.8237428042373861, 'R^2': -0.6877687897963096}, { 'k': 2, 'MSE': 0.8534297082546841, 'RMSE': 0.9238125936869902, 'MAE': 0.7135534991369357, 'R^2': -0.2502494485042783}, {'k': 3, 'MSE': 0.7644680530281004, 'RMSE': 0.8743386375015691, 'MAE': 0.6781620021552554, 'R^2': -0.11992323732453802}, { 'k': 5, 'MSE': 0.6883302537154519, 'RMSE': 0.829656708353191, 'MAE': 0.6449510498949313, 'R^2': -0.008383598288957517}, { 'k': 10,

Desired Result:

	k	MSE	RMSE	MAE	R^2
0	1	1.152084	1.073352	0.823743	-0.687769
1	2	0.853430	0.923813	0.713553	-0.250249
2	3	0.764468	0.874339	0.678162	-0.119923
3	5	0.688330	0.829657	0.644951	-0.008384
4	10	0.631001	0.794356	0.620237	0.075602
5	100	0.579404	0.761186	0.596919	0.151190
6	1000	0.581676	0.762677	0.600227	0.147861
7	5000	0.600544	0.774947	0.616670	0.120221

Loading results_list:

```
# Evaluate NN and k-NN models
for k in k_values:
    model = KNearestNeighbors(k=k)
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)

    mse = mean_squared_error(predictions, y_test)
    rmse = root_mean_squared_error(predictions, y_test)
    mae = mean_absolute_error(predictions, y_test)
```

```
r2 = r_squared(predictions, y_test)
```

Create a dictionary with the relevant variables from this value of k, and add it to results_list results_list.append({'k': k, 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'R^2': r2})

```
# List of values of k to test
k_values = [1, 2, 3, 5, 10, 100, 1000, 5000]
# List to store the results. This will be a list of dictionaries
results_list = []
# Evaluate NN and k-NN models
for k in k values:
    model = KNearestNeighbors(k=k)
    model.fit(X train, y train)
    predictions = model.predict(X test)
    mse = mean_squared_error(predictions, y_test)
    rmse = root_mean_squared_error(predictions, y_test)
    mae = mean absolute error(predictions, y_test)
    r2 = r_squared(predictions, y_test)
```

Create a dictionary with the relevant variables from this value of k, and add it to results_list.
results_list.append({'k': k, 'MSE': mse, 'RMSE': rmse, 'MAE': mae, 'R^2': r2})

Create DataFrame from the list of results. Each dictionary in the list becomes a row in the DataFrame
results = pd.DataFrame(results_list)

```
# Print the results
display(results)
```

Highlighting best values (see .ipynb for code)

	k	MSE	RMSE	MAE	R^2
0	1	1.152084	1.073352	0.823743	-0.687769
1	2	0.853430	0.923813	0.713553	-0.250249
2	3	0.764468	0.874339	0.678162	-0.119923
3	5	0.688330	0.829657	0.644951	-0.008384
4	10	0.631001	0.794356	0.620237	0.075602
5	100	0.579404	0.761186	0.596919	0.151190
6	1000	0.581676	0.762677	0.600227	0.147861
7	5000	0.600544	0.774947	0.616670	0.120221

Nearest Neighbor Improvements (Part 2)

- When does *k*-NN do something unreasonable?
 - When some of the nearest neighbor are very close and some are relatively far away.
 - k-NN does not consider how far away points are as long as they are within the k nearest neighbors.
- Idea: Assign different weights to each of the k neighbors based on their distance from the query point.
 - Called "Weighted k-Nearest Neighbors" (weighted k-NN)
 - Ensures that closer neighbors have a bigger influence on the prediction than neighbors that are far away.

Weighted k-Nearest Neighbor

- Let (x_i^{NN}, y_i^{NN}) be the i^{th} nearest neighbor
- Let w_i be the weight associated with this point
 - We consider only non-negative weights: $w_i \ge 0$.
 - We describe how w_i can be computed on future slides.
- Weighted *k*-NN predicts the label:

$$\hat{y} = \frac{\sum_{i=1}^{k} w_i y_i^{NN}}{\sum_{j=1}^{k} w_j}$$

• This is equivalent to:

$$\hat{y} = \sum_{i=1}^{k} \frac{w_i}{\sum_{j=1}^{k} w_j} y_i^{NN}$$

Why do we divide by the sum of the weights?

- So that the weights sum to one.
- This keeps the prediction at the same "scale" as the labels.
- Example: If k = 2, $w_1 = 1$ and $w_2 = 1$, and the division by the sum of weights is dropped.
 - The prediction is $2 \times \text{too big!}$
- Dividing by the sum of the weights makes this a *weighted average*.

$\hat{y} = \sum_{i=1}^{k} \frac{w_i}{\sum_{j=1}^{k} w_j} y_i^{NN}$

Weighting Options

• Would it be reasonable to use:

$$w_i = \operatorname{dist}(x_i^{NN}, x_{\operatorname{query}})?$$

- No, this would place larger weights on points that are farther from the query.
- We could use the inverse of the distance:

$$w_i = \frac{1}{\operatorname{dist}(x_i^{NN}, x_{\operatorname{query}})}$$

• We might want the weight to decrease faster for points that are farther away.

Possible Weighting Scheme

Gaussian Kernel

- The re-scaled probability density function (PDF) of a normal distribution.
 - PDF of a normal distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Mean $\mu = 0$
- Standard deviation σ (a hyperparameter)
- Normalizing the weights makes the constant $\frac{1}{\sigma\sqrt{2\pi}}$ cancel out in each weight. Hence:

• We use
$$x = dist(x_i^{NN}, x_{query})$$
 giving:
 $w_i = e^{-\frac{x^2}{2\sigma^2}}$
 $w_i = e^{-\frac{dist(x_i^{NN}, x_{query})^2}{2\sigma^2}}$

Gaussian Kernel

$$\hat{y} = \sum_{i=1}^{k} \frac{w_i}{\sum_{j=1}^{k} w_j} y_i^{NN} \qquad w_i = e^{-\frac{\operatorname{dist}(x_i^{NN}, x_{\operatorname{query}})^2}{2\sigma^2}}$$

- What is the impact of a bigger value of σ ?
 - It makes the weight curve wider
 - Places larger weights (more emphasis) on points that are farther away
- What is the impact of a smaller value of $\sigma?$
 - It makes the weight curve tighter
 - Places more emphasis on points that are closer

$$\hat{y} = \sum_{i=1}^{k} \frac{w_i}{\sum_{j=1}^{k} w_j} y_i^{NN} \qquad w_i = e^{\frac{\operatorname{dist}(x_i^{NN}, x_{\operatorname{query}})^2}{2\sigma^2}}$$

Weighted k-Nearest Neighbor

```
class WeightedKNearestNeighbors(BaseEstimator):
    # Add a constructor that stores the value of k and sigma (hyperparameters)
    def __init__(self, k=3, sigma=1.0):
        self.k = k
        self.sigma = sigma
        We now have two hyperparameters, k and σ
```

Fit is unchanged

```
def fit(self, X, y):
    # Convert X and y to NumPy arrays if they are DataFrames
    if isinstance(X, pd.DataFrame):
        X = X.values
    if isinstance(y, pd.Series):
        y = y.values
    # Store the training data and labels
    self.X_data = X
    self.y_data = y
    # Create a KDTree for efficient nearest neighbor search
    self.tree = KDTree(X)
```

```
return self
```

Gaussian Kernel

$$w_i = e^{\frac{\operatorname{dist}(x_i^{NN}, x_{\operatorname{query}})^2}{2\sigma^2}}$$

def gaussian_kernel(self, distance):
 # Gaussian kernel function
 return np.exp(- (distance ** 2) / (2 * self.sigma ** 2))

Predict

You could compute all dist, ind using one call to tree.query, not one call per query.

array([[100.40687128, 105.49888009, 109.22491566]])

array([[6178, 1856, 9622]], dtype=int64)

def predict(self, X): # Convert X to a NumPy array if it's a DataFrame if isinstance(X, pd.DataFrame): X = X.values# We will iteratively load predictions, so it starts empty predictions = [] # Loop over rows in the query for x in X: # Query the tree for the k nearest neighbors For 0th query in dist, ind = self.tree.query([x], k=self.k) tree.query # Calculate weights using the Gaussian kernel weights = self.gaussian kernel(dist[0]) # Check if weights sum to zero. This happens when all points are very far if np.sum(weights) == 0: # If weights sum to zero, assign equal weight to all neighbors weights = np.ones like(weights) # Weighted average of the labels of the k nearest/neighbors weighted_avg_label = np.average(self.y_data[ind[0]], weights=weights) predictions.append(weighted avg label) # Return the array of predictions we have created return np.array(predictions)

NN vs k-NN vs Weighted k-NN

	Model	MSE	RMSE	MAE	R^2
0	k-NN k=1 sigma=None	1.152084	1.073352	0.823743	-0.687769
1	k-NN k=100 sigma=None	0.579404	0.761186	0.596919	0.151190
2	k-NN k=100 sigma=100	0.579572	0.761297	0.596952	0.150943
3	k-NN k=200 sigma=100	0.577554	0.759970	0.596220	0.153901
4	k-NN k=300 sigma=100	0.577443	0.759897	0.596408	0.154062
5	k-NN k=400 sigma=100	0.577620	0.760013	0.596670	0.153804
6	k-NN k=500 sigma=100	0.578077	0.760314	0.597044	0.153135

Nearest Neighbor Variants

- How can nearest neighbor algorithms be extended to the classification setting?
- **Common Solution**: Use a majority vote among the *k* nearest neighbors.
 - **Unweighted**: The most common label among the nearest neighbors is selected.
 - Weighted: Each neighbor's vote is weighted using, for example, the Gaussian kernel.

Tuning Hyperparameters

- How should we set k and σ ?
- Idea: Enumerate a "grid" of possible values.

Define the ranges for k and sigma
k_values = [k for k in range(100, 1100, 100)]
sigma_values = [20, 50, 75, 100, 200, 400, 600]

- Try all possible combinations of values of k in k_values and σ in sigma values.
 - If plotted as points where the horizontal axis is k and the vertical is σ (or vice versa), the points would form a grid.
 - Hence, called "Grid Search"
- Select the values that result in the best evaluation

Tuning Hyperparameters

- Grid search is common due to its simplicity.
- Research suggests that randomized searches may be more principled.
 - Randomly sample each hyperparameter from some distribution
 - Typically run for some fixed number of hyperparameter settings

Grid Search Results (Weighted k-NN, GPA)

- Why do you think a value of k around 200 is particularly effective for this problem?
- Why do you think $\sigma = 75$ works for a wide range of k?
- Why do you think changing σ makes little difference when it is large?
- As you work with each ML algorithm, you'll get a sense for how to set the hyperparameters
 - It's an "art" and a "science"

Intermission

- Class will resume in 5 minutes.
- Feel free to:
 - Stand up and stretch.
 - Leave the room.
 - Talk to those around you.
 - Write a question on a notecard and add it to the stack at the front of the room.

End

